
• By joining this Zoom web tutorial session, you
automatically consent to the recording of all video,
audio, and chat-room content.

• Furthermore, you grant permission to the OpenCilk
organization to share the recordings, in full or in
part, internally and with third parties.

• Please join without video and stay muted if you do
not wish to be recorded.

Slides downloadable at
http://opencilk.org/pact21/opencilk-pact-2021.pdf

This Presentation Will Be Recorded

1

http://opencilk.org/
http://opencilk.org/beta2/opencilk.spaa.2020.pdf

How to Parallelize Your Own
Language Using OpenCilk

Components

International Conference on Parallel
Architectures and Compilation Techniques

September 27, 2021

I-Ting Angelina Lee
Washington University in St. Louis

Tao B. Schardl
MIT CSAIL

And many helpers
www.opencilk.org

contact@opencilk.org

http://www.opencilk.org/

• Join the Slack channel:
https://tinyurl.com/OpenCilkSlack,
channel #pact2021.

• You will need Docker set up to do the
hands-on exercises.

• Download the Docker image:
https://tinyurl.com/OpenCilkDocker

• We provide a script, docker.sh, to help you
use the Docker image:
https://tinyurl.com/OpenCilkDockerSh

Getting Started

3

https://tinyurl.com/OpenCilkSlack
https://tinyurl.com/OpenCilkDocker
https://tinyurl.com/OpenCilkDockerSh

• To setup the Docker image initially:

• To run code in the Docker container:

• In the Docker container, verify the version
of clang:

Using the Docker Image

$./docker.sh init

$./docker.sh run

4

$ clang --version
clang version 12.0.0

• OpenCilk is an open-source implementation
of the Cilk concurrency platform.

• Cilk extends C/C++ with a small set of
linguistic control constructs to support fork-
join parallelism.

• Cilk focuses on:
§ Shared-memory multiprocessing
§ Client-side multiprogrammed environments
§ Regular and irregular parallel computations
§ Predictable and composable performance

5

What Is OpenCilk?

• A processor-oblivious programming model
with simple, effective, and composable
language constructs for expressing
parallelism.

• A provably and practically efficient work-
stealing scheduler.

• A suite of productivity tools:
§ Cilksan: Determinacy race detector
§ Cilkscale: Scalability analyzer

6

Features of Cilk

OpenCilk System Architecture
} Compatibility — Provide backward compatibility with

Cilk Plus minus vector ops (i.e., Cilk++).
} Open source — Distribute under liberal open-source

licenses.
} Componentization — Divide system into distinct

software components with well-defined interfaces.
} Integration — As individual components are enhanced,

ensure that they continue to interoperate with the
entire platform.

} Reliability — Provide a suite of extensive tests and
benchmarks to ensure that releases are stable, perform
well, and are free of serious bugs.

7

BASICS OF RECURSIVE
FORK-JOIN PARALLEL PROGRAMMING

8

Nested Parallelism in Cilk
uint64_t fib(uint64_t n) {

if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

The named child
function may execute in
parallel with the parent
caller.

Control cannot pass this
point until all spawned
children have returned.

Cilk keywords grant permission for parallel execution.
They do not command parallel execution (processor
oblivious). 9

Loop Parallelism in Cilk

The iterations of
a cilk_for loop
may execute in
parallel.

cilk_for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {

int temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

Example:
In-place
matrix
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT

Cilk keywords grant permission for parallel execution.
They do not command parallel execution (processor
oblivious). 10

Serial Projection
Cilk source

uint64_t fib(uint64_t n) {
if (n < 2) {

return n;
} else {

uint64_t x, y;
x = fib(n-1);
y = fib(n-2);

return (x + y);
}

}

serial projection

The serial projection of a Cilk program is always a
legal interpretation of the program’s semantics.

To obtain the serial
projection:

#define cilk_spawn
#define cilk_sync
#define cilk_for for

Moreover, a Cilk program executing on one core
behaves exactly the same as the execution of its
serialization.

uint64_t fib(uint64_t n) {
if (n < 2) {

return n;
} else {

uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

11

Scheduling in Cilk
• Cilk allows the

programmer to express
logical parallelism in an
application.

• The Cilk scheduler
maps the executing
program onto the
processor cores
dynamically at runtime.

• Cilk’s work-stealing
scheduler is provably
efficient.

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

…

Memory I/O

$

P

$

P

$

P

Network

12

Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

P P PP

Spawn!

Cilk’s Work-Stealing Scheduler

13

P P PP

Spawn!Spawn! Spawn!

Cilk’s Work-Stealing Scheduler
Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

14

P P PP

Return!

Cilk’s Work-Stealing Scheduler
Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

15

P P PP

Return!

Cilk’s Work-Stealing Scheduler
Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

16

P P PP

Steal!

Cilk’s Work-Stealing Scheduler

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

17

P P PP

Cilk’s Work-Stealing Scheduler

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

18

P P PP

Spawn!

Cilk’s Work-Stealing Scheduler

Resume execution upon a successful steal.

Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque
like a stack.

19

OpenCilk Platform

20

Compiler

Parallel
Performance

Linker
Runtime
System

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

Binary

P⋯PPProgram
input The compiler and

runtime library
together implement

the scheduler.

Dev Flow: Serial Testing First

21

C/C++ Compiler

Reliable single-
threaded code

Binary

P
Serial

regression
tests

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
} Cilk code

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = fib(n-1);
y = fib(n-2);
return (x + y);

}
} serial projection

Cilk's serial
projection

enables simple
serial testing.

Parallel Testing

22

Cilk Compiler
with Cilksan

Binary

P
Parallel

regression
tests

uint64_t fib(uint64_t n) {
if (n < 2) { return n; }
else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
} Cilk code

Cilksan finds and
localizes race bugs.

Reliable multi-
threaded code

Scalability Analysis

23

Cilk Compiler
with Cilkscale

Binary

P
Parallel

regression
tests

uint64_t fib(uint64_t n) {
if (n < 2) { return n; }
else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
} Cilk code

Cilkscale analyzes
how well your

program will scale
to larger machines.

Scalability
report

Hands-On with Cilk Programming
• Take a look at nqueens.c.
• How do you parallelize this code?

24

The N-Queen Problem
Problem
Place n queens on an n × n chessboard so that no
queen attacks another, i.e., no two queens in any row,
column, or diagonal. Count the number of possible
solutions.

25

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

26

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

27

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

28

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

Backtrack!
29

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

30

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

Backtrack!
31

Backtracking Search
Strategy
Try placing queens row by row. If you can’t place a
queen in a row, backtrack.

Backtrack!
32

Board Representation
The board can be represented as an array of integers.

2

4

6

0

7

1

3

5

Representation

Column
where the
queen in this
row is placed.

0 1 2 3 4 5 6 7

33

Hands-On with Cilk Programming
• Take a look at nqueens.c.
• How do you parallelize this code?

• In the Docker container, compile and run the
code once parallelized:

34

$ cd /tutorial
$ make nqueens
$./nqueens 13

Racy NQueens Code (racy-nqueens.c)
int nqueens(int n, int row, char *board) {
int *count;
char *new_board;
int solNum = 0;
if (n == row) { return 1; } // end of the board; found a solution

count = (int *) alloca(n * sizeof(int));
(void) memset(count, 0, n * sizeof (int));

new_board = (char *) alloca((row + 1) * sizeof (char));
memcpy(new_board, board, row * sizeof (char));

for (int col = 0; col < n; col++) {
new_board[row] = col;
if (no_conflict(row + 1, new_board))
count[col] = cilk_spawn nqueens(n, row + 1, new_board);

}
cilk_sync;

for (int i = 0; i < n; i++) { solNum += count[i]; }

return solNum;
}

Where’s the
race?

35

DEBUGGING RACE CONDITIONS

36

int x = 0;
cilk_for (int i=0, i<2, ++i) {
x++;

}
assert(x == 2);

Determinacy Races
DEFINITION: A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the
instructions performs a write.

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Trace

37

A Closer Look

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

38

Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1
r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);
39

DEFINITION: A determinacy race occurs when two
logically parallel instructions access the same
memory location and at least one of the
instructions performs a write.

Types of Races

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they
have no determinacy races between them.

Suppose that instruction A and instruction B
both access a location x, and suppose that
A∥B (A is parallel to B).

40

In Contrast, Data Races
DEFINITION: A data race occurs when two logically
parallel instructions holding no locks in common
access the same memory location and at least one
of the instructions performs a write.

WARNING: Codes that use locks are
nondeterministic by intention.

Although data-race-free programs obey atomicity
constraints, they can still be nondeterministic,
because acquiring a lock can cause a determinacy
race with another lock acquisition.

41

Determinism
Cilk supports writing deterministic parallel
programs, in which every memory location is
updated with the same sequence of values in
every execution.
• The program always behaves the same way

on a given input, regardless of scheduling.
• For many interesting and practical programs,

there is no need to use locks or other
concurrency mechanisms.

42

Advantage: DEBUGGING!

Cilksan Race Detector
• The Cilksan-instrumented program is produced by

compiling with the –fsanitize=cilk command-line
compiler switch.

• If an ostensibly deterministic Cilk program run on a
given input could possibly behave any differently than
its serial projection, Cilksan guarantees to report and
localize the offending race.

• Cilksan employs a regression-test methodology,
where the programmer provides test inputs.

• Cilksan identifies filenames, lines, and variables
involved in races, including stack traces.

• Ensure that all program files are instru-
mented, or you’ll miss some bugs.

• Cilksan is your best friend. 43

Hands-On with Cilksan (~15 min)
• In the Docker container, compile racy-nqueens.c

with Cilksan enabled:

44

$ cd /tutorial
$ make -B racy-nqueens CILKSAN=1
$./racy-nqueens 9

• You should see a race report. Where is the race?
• How do you fix the race?

Hands-On with Cilksan
Race detected at address 7f460b325874
* Read 43ef18 nqueens ./racy-nqueens.c:73:3
| `-to variable board (declared at ./racy-nqueens.c:58)
+ Call 43f73b nqueens ./racy-nqueens.c:78:29
+ Spawn 43efd7 nqueens ./racy-nqueens.c:78:29
|* Write 43efa9 nqueens ./racy-nqueens.c:76:18
|| `-to variable new_board (declared at ./racy-nqueens.c:60)
\| Common calling context
+ Call 43f73b nqueens ./racy-nqueens.c:78:29
+ Spawn 43efd7 nqueens ./racy-nqueens.c:78:29
[...]
+ Call 43f42b main ./racy-nqueens.c:111:9
Allocation context
Stack object new_board (declared at ./racy-nqueens.c:60)
Alloc 43eef8 in nqueens ./racy-nqueens.c:72:16
Call 43f73b nqueens ./racy-nqueens.c:78:29
Spawn 43efd7 nqueens ./racy-nqueens.c:78:29

[...]
Call 43f42b main ./racy-nqueens.c:111:9

45

72
73
74
75
76
77
78
79

[...]
new_board = (char *) alloca((row + 1) * sizeof (char));
memcpy(new_board, board, row * sizeof (char));

for (int col = 0; col < n; col++) {
new_board[row] = col;
if (no_conflict(row + 1, new_board))
count[col] = cilk_spawn nqueens(n,row+1,new_board);

}
[...]

racy-nqueens.c

WHAT IS PARALLELISM?

46

Execution Model
Example:
fib(4)

47

int fib(int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

int fib(int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

Execution Model
Example:
fib(4)

The computation dag
unfolds dynamically.

4

3

2

2

1

1 1 0

0

48

Trace Dag

• A parallel instruction stream (trace) is a dag G = (V, E).
• Each vertex v ∈ V is a strand: a sequence of instructions

not containing a spawn, sync, or return from a spawn.
• An edge e ∈ E is a spawn, call, return, or continue e

edge.
• Loop parallelism (cilk_for) is converted to spawns and

syncs using recursive divide-and-conquer.

spawn edge return edge
continue edge

initial strand final strand

strand

call edge

49

How Much Parallelism?

Assuming that each strand executes in unit time,
what is the parallelism of this computation?
In other words, what is the maximum possible
speedup of this computation, where speedup is
how much faster the parallel code runs
compared to the serial code?

50

TP = execution time on P processors

T1 = work
= 18

Performance Measures

51

= 18 = 9
T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

TP = execution time on P processors

Performance Measures

52

WORK LAW
TP ≥ T1/P

SPAN LAW
TP ≥ T∞

Performance Measures

= 18 = 9
T1 = work T∞ = span

TP = execution time on P processors

53

DEFINITION: T1/TP = speedup on P processors.

• If T1/TP < P, we have sublinear speedup.
• If T1/TP = P, we have (perfect) linear speedup.
• If T1/TP > P, we have superlinear speedup,

which is not possible in this simple
performance model, because of the WORK LAW
TP ≥ T1/P.

Speedup

54

Parallelism
Because the SPAN LAW dictates that
TP ≥ T∞, the maximum possible
speedup given T1 and T∞ is
T1/T∞ = parallelism

= the average
amount of work
per step along
the span

= 18/9
= 2 .

55

Parallelism: T1/T∞ = 2.125

Work: T1 = 17
Span: T∞ = 8

Example: fib(4)
Assume for simplicity
that each strand in
fib(4) takes unit
time to execute.

Using many more than 2 processors can
yield only marginal performance gains.

56

Cilk Performance Bound

57

Theorem [BL94]. A work-stealing scheduler can
achieve expected running time

TP ≤ T1 / P + O(T∞)
on P processors.

Definition. TP — execution time on P processors
T1 — work T∞ — span

T1 / T∞ — parallelism

In Practice. Cilk's scheduler achieves execution
time

TP ≈ T1/P + T∞
on P processors.

Linear Speedup
Corollary. Cilk scheduler achieves near-perfect
linear speedup whenever T1/T∞ ≫ P.

Proof. Since T1/T∞ ≫ P is equivalent to
T∞ ≪ T1/P, Cilk's performance bound gives us

TP ≤ T1/P + T∞
≈ T1/P . (first term dominates)

Thus, the speedup is T1/TP ≈ P . ■

58

Cilkscale Scalability Analyzer
• The OpenCilk compiler provides a scalability analyzer

called Cilkscale, which is similar in some ways to Intel’s
Cilkview tool.

• Like the Cilksan race detector, Cilkscale uses compiler
instrumentation to analyze a serial execution of a
program.

• Cilkscale computes work and span to derive upper bounds
on parallel performance of all or just part of your
program.

• Cilkscale is really three tools in one:
• an analyzer,
• an autobenchmarker,
• a visualizer.

59

BREAK

60

CHEETAH RUNTIME SYSTEM

61

Cilk Performance Bound

62

Theorem [BL94]. A work-stealing scheduler can
achieve expected running time

TP ≤ T1 / P + O(T∞)
on P processors.

Time workers
spend working.

Time workers
spend stealing.

If the program has ample parallelism, i.e.,
T1/T∞ ≫ P , then the first term dominates, and
TP ≈ T1/P.

Parallel Speedup
Let TS denote the work of a serial program.
Suppose the serial program is parallelized.
Let T1 denote the work of the parallel
program and let T∞ denote the span of the
parallel program.
Parallel speedup is measured by TS/TP .

To achieve linear speedup on P processors
over the serial program, i.e., TP ≈ TS/P, the
parallel program must exhibit:
• Ample parallelism: T1/T∞≫ P .
• High work efficiency: TS/T1 ≈ 1.

63

The Work-First Principle
To optimize the execution of programs with sufficient
parallelism, the implementation of the Cilk scheduler
works to maintain high work-efficiency by abiding by
the work-first principle:

Optimize for the ordinary serial
execution, at the expense of some

additional overhead in steals.

64

CHEETAH RUNTIME SYSTEM:
REQUIRED FUNCTIONALITIES

65

P P PP

Steal!

Cilk’s Work-Stealing Scheduler

• Single-worker execution mirrors that of its serial projection.
• When a worker runs out of work, it steals from the top of a

random victim’s deque.

Each worker (processor) maintains a deque of ready
work, and it manipulates the bottom of the deque like
a stack.

66

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Cilk’s Execution Model
Example:
fib(4)

The computation dag
unfolds dynamically.

4

3

2

2

1

1 1 0

0

67

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

A Worker’s Behavior Mirrors
Serial Execution

Example:
fib(4)

4

3

P1

P1 %rip

68

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

A Worker’s Behavior Mirrors
Serial Execution

Example:
fib(4)

4

3

2

P1

P1 %rip

69

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

A Worker’s Behavior Mirrors
Serial Execution

Example:
fib(4)

4

3

2

1

P1

P1 %rip

70

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Successful Steals Create Parallelism

Example:
fib(4)

4

3

2

1

P1 %rip

P2
P2 %rip

P2 resumes fib(4)
mid-execution.

71P1

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Successful Steals Create Parallelism

Example:
fib(4)

4

3

2

2

1

P1 %rip

P2
P2 %rip

72P1

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Successful Steals Create Parallelism

Example:
fib(4)

4

3

2

2

1

P1 %rip

P2

P2 %rip

P3

P3 %rip

P3 resumes fib(3)
mid-execution.

73P1

Views of stack

4 4

2

4

3

Cilk supports C’s rule for pointers: A pointer to stack
space can be passed from parent to child, but not from
child to parent.

Cilk’s cactus stack supports
multiple views in parallel.

Cactus Stack

P1 P2 P3
4

3

2

2

1 P1

P2P3
3

2

1

74

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Syncs

Example:
fib(4)

4

3

2

2

1

0 P1

P1 %rip

P2

P2 %rip

P3

P3 %rip
Sync?Can’t sync
yet!

75

Required Functionalities
• Each worker needs to keep track of its own

execution context, including work that it is
responsible for / available to be stolen.

• A worker after a successful steal, can
resume the stolen function mid-execution.

• Upon a sync, a worker needs to know
whether there is any spawned subroutine
still executing on another worker.

• The runtime must maintain the cactus
stack abstraction as the parallel execution
unfolds.

76

Cheetah Runtime Data Structures
The Cheetah runtime utilizes three basic data
structures as workers execute work:
• A work deque storing the execution

context of ready work.
• A Cilk stack frame structure to represent

each spawning function (Cilk function).
• A closure tree to represent function

instances that has every been stolen to
support true parallel execution.

77

Division of Labor
The work-first principle guides the division of the Cilk
scheduler between the compiler and the runtime library.

Compiler
• Manages a handful of small data structures (e.g.,

initialization / operations on Cilk stack frames and
deques).

• Implements optimized fast paths for execution of
functions when no steals have occurred (i.e., no actual
parallelism has been realized).

Runtime library
• Manages the more heavy-weight data structures (e.g.,

the closure tree).
• Handles slow paths of execution, e.g., when a steal

occurs.
78

CHEETAH RUNTIME SYSTEM:
ORGANIZATION OF THE RUNTIME DATA
STRUCTURE

79

Deque of Frames
Each Cilk worker maintains a deque of
references to Cilk stack frames* containing
work available to be stolen.

Cactus stack

Deque 4

3

2

2

1

P1
head

tail

Worker

current

*We’ll discuss what a Cilk stack
frame contains later. 80

Spawn
When spawning, the current frame is pushed
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

2

1

P1
head

tail

Worker

1
current

81

Return from Spawn
When returning from a spawn, the current
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

2

1

P1
head

tail

Worker

1
current

82

Stealing Frames

Cactus stack

Deque

4

3

2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Some coordination
is required.

Workers operate on the bottom of the deque, while
thieves try to steal work from the top of the deque.

83

Synchronizing Thieves and Workers
Cilk uses a lock associated with each deque to perform
synchronization.

Cactus stack

Deque

4

3
2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

Question: Is it more important
to optimize the operations of
workers or those of thieves? Answer: Operations

of workers. 84

Popping the Deque

85

When a worker is about to return from a
spawned function, it needs to pop the stack
frame from the tail of the deque. There are
two possible outcomes:
1. If the pop succeeds, then the execution

continues as normal.
2. If the pop fails, then the worker is out of

work to do, and it becomes a thief and tries
to steal.

Question: Which case
is more important to
optimize?

Answer: Case 1.

The THE Protocol

86

void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

The worker and the thief
coordinate using
the THE protocol

The THE Protocol

87

void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

Observation I:
Synchronization is only

necessary when the deque is
almost empty.

The THE Protocol

88

void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

Observation II: The pop
operation is more likely to

succeed than fail.

The THE Protocol

89

void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

The Work-First
Principle: Optimize the
operations of workers.

Workers pop the
deque optimistically…

…and only grab the deque’s lock
if the deque appears to be empty.

Thieves always
grab the lock.

Successful Steal
Workers operate on the bottom of the deque, while
thieves try to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

Need to set up the thief’s
stack and processor state
after a successful steal.

90

Saving and Restoring Processor State
To save and restore processor state, the Cilk compiler
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code
BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))
x = fib(n-1);

Compiled pseudocode

Buffer to store
processor state.

Save processor state into
ctx and allow a worker to
resume the continuation.

91

Deque References to Frames
Worker deques store references to the buffers in each
frame, from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx

%rbx, %r10, …

92

int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Semantics of Sync

Example:
fib(4)

2

1P2

A cilk_sync waits on child frames, not just on workers.

3

2

0 P1

P3

4
Can’t sync

yet!

1P4

93

Nested Synchronization

P1

P2

P3

P5

Cilk supports nested synchronization, where a frame
waits only on its child subcomputations.

Waiting on
3 children.

P4

Waiting on
2 children.

How does Cilk keep track
of who’s waiting on who?94

Closure Tree

P1

P2

P3

P5
P4

The Cilk runtime maintains a tree of closures to keep
track of synchronization information.

active
closure

suspended
closure

INVARIANT: There is a closure
associated with every frame that
has ever been stolen or is sitting

on top of a worker’s deque.
95

Closure Data

P1 P2 P3

To maintain the state of the running program,
each closure maintains:

• A join counter of the
number of outstanding
spawned children.

• References to parent
and child closures.

• References into the
corresponding Cilk
stack frames on the
cactus stack.

96

Common Case for Sync

97

Question: If the program has ample parallelism,
what do we expect typically happens when the
program execution reaches a cilk_sync?

Answer: The executing function contains no
outstanding spawned children.

How does the
scheduler optimize

for this case?

Managing the Full-Frame Tree: Sync

98

P P PP

spawned
called
called

spawned
called

spawned
called

spawned

called

The flag field in a Cilk stack frame
maintains the frame’s status, which is
set when stolen. Only stolen spawning

frames need nontrivial sync.

BUFFER ctx;
…
if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode
cilk_sync;

Cilk code

Like cilk_spawn, a cilk_sync is compiled
using setjmp, in order to save the processor’s
state when the frame is suspended.

Same buffer as
used for spawns.

Call into the runtime
to suspend the frame.

99

Full Compiler/Runtime ABI

100

C pseudocode of
compiled result

Cilk
compiler

int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
y = baz(n);
cilk_sync;
return x + y;

}

int foo(int n) {
__cilkrts_stack_frame_t sf;
__cilkrts_enter_frame(&sf);
int x, y;
/* s = cilk_spawn bar(n); */
if (!setjmp(sf.ctx))

bar_spawn_helper(&x, n);
y = baz(n);
/* cilk_sync */
if (sf.flags & CILK_FRAME_UNSYNCHED)

if (!setjmp(sf.ctx))
__cilkrts_sync(&sf);

int result = x + y;
__cilkrts_leave_frame(&sf);
return result;

}

void bar_spawn_helper(int *x, int n) {
__cilkrts_stack_frame sf;
__cilkrts_enter_frame_helper(&sf);
__cilkrts_detach();
*x = bar(n);
__cilkrts_leave_frame_helper(&sf);

}

Full Compiler/Runtime ABI

101

int foo(int n) {
__cilkrts_stack_frame_t sf;
__cilkrts_enter_frame(&sf);
int x, y;
/* s = cilk_spawn bar(n); */
if (!setjmp(sf.ctx))

bar_spawn_helper(&x, n);
y = baz(n);
/* cilk_sync */
if (sf.flags & CILK_FRAME_UNSYNCHED)

if (!setjmp(sf.ctx))
__cilkrts_sync(&sf);

int result = x + y;
__cilkrts_leave_frame(&sf);
return result;

}

void bar_spawn_helper(int *x, int n) {
__cilkrts_stack_frame sf;
__cilkrts_enter_frame_helper(&sf);
__cilkrts_detach();
*x = bar(n);
__cilkrts_leave_frame_helper(&sf);

}

save execution context
to prepare for spawn

push the Cilk stack frames
corresponding to the spawning

of bar onto the deque

clean up and try to
pop the deque

save execution context
in the event of a non-

trivial sync

Cilk stack frame contains
the buffer for saving
execution context

Hands-On with Cheetah
• First: cheetah runtime overview
• Compile and run nqueens:

• Enable stats in cheetah: set CILK_STATS to 1 in
cheetah/runtime/rts-config.h.

• Compile cheetah and run nqueens again.
• Add instrumentation to correct stats output.

(Be sure to recompile nqueens if you modify
cilk2c_inline.c)

102

$ cd /tutorial
$ make cheetah nqueens
$./nqueens 13

CHEETAH RUNTIME SYSTEM:
DESIGN CHOICES

103

The Work-First Principle
To optimize the execution of programs with sufficient
parallelism, the implementation of the Cilk runtime
system works to maintain high work-efficiency by
abiding by the work-first principle:

Optimize for the ordinary serial
execution, at the expense of some

additional overhead in steals.

104

Division of Labor
The work-first principle guides the division of the Cilk
runtime system between the compiler and the runtime
library.
• The compiler implements optimized fast paths for

execution of functions when no steals have
occurred (i.e., no actual parallelism has been
realized).

• The runtime library handles slow paths of
execution, e.g., when a steal occurs.

Examples:
• The THE protocol
• The implementation of cilk_sync
• The use of Cilk stack frames versus closures

105

Implementation of Spawn

106

Classic randomized work-stealing:
Continuation-stealing / work-first: go execute the
spawned child and package up the continuation to be
stolen.
Alternative: child-stealing / help-first: push the
spawned child onto the deque so it can be stolen and
continue execute the spawning function. Pop off
spawned children to execute when encounter a sync.

int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
y = baz(n);
cilk_sync;
return x + y;

}

Issues with Child-Stealing: Space

107

for (int i = 0; i < 1000; ++i) {
cilk_spawn foo(i);

}
cilk_sync;

Child-stealing: will create 1000 work items and push
them onto the deque before start doing any work!

Continuation-stealing: work on the spawned iteration
and let the rest of the loops to be stolen potentially.

Continuation-Stealing vs Child-
Stealing

108

Continuation-stealing:
• Potentially better

space utilization.
• Better work-efficiency.
• One-worker execution

follows that of serial
projection.

• For private caches,
one can bound the
cache misses due to
parallel executions.

Child-stealing:
• Potentially worse space

utilization.
• Worse work-efficiency.
• One-worker execution

does NOT follow that
of serial elision.

• No proven bound on
cache misses due to
parallel executions.

109

Reads:
"Only Monsters
Steal Children."

OPENCILK COMPILER MIDDLE-END

110

Compilation Pipeline

Cilk Clang LLVM IR

QUESTION: Where does the compiler deal with
cilk_spawn, cilk_sync, and cilk_for?

Traditional
answer

LLVM
optimizer

LLVM IR EXELLVM code
generator

111

Example: Normalize
__attribute__((const)) double norm(const double *X, int n);

void normalize(double *restrict Y, const double *restrict X,
int n) {

for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

Test: Random vector, n=64M
Machine: Amazon AWS c4.8xlarge
Running time: TS = 0.312 s

112

Performance of Parallel Normalize
__attribute__((const)) double norm(const double *X, int n);

void normalize(double *restrict Y, const double *restrict X,
int n) {

cilk_for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

Test: Random vector, n=64M
Machine: Amazon AWS c4.8xlarge
Running time of serial code: TS = 0.312 s
18-core running time: T18 = 180.657 s
1-core running time: T1 = 2600.287 s

Terrible work
efficiency!

TS/T1 = 0.312/2600
~ 1/8600

113

Cilk
compiler

Effect of Compiling Cilk Code
void normalize(double *restrict Y,

const double *restrict X, int n) {
cilk_for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

void normalize(double *restrict Y,
const double *restrict X, int n) {

struct args_t args = { Y, X, n };
__cilkrts_cilk_for(normalize_helper, args, 0, n);

}
void normalize_helper(struct args_t args, int i) {
double *Y = args.Y;
double *X = args.X;
int n = args.n;
Y[i] = X[i] / norm(X, n);

}

Cilk code

C pseudo-
code

Call into Cilk runtime
library to execute a
cilk_for loop.Helper function

encodes the loop body.

The compiler can’t move
norm out of the loop.

114

Tapir: Task-Parallel IR
Tapir embeds recursive fork-join parallelism
into LLVM’s IR.

115

With few changes, LLVM
existing optimizations
work on parallel code.

Cilk Clang Tapir LLVM
optimizer

Tapir EXELLVM code
generator

Tapir adds three
instructions to LLVM IR
that encode recursive
fork-join parallelism.

Cilk Clang LLVM IR LLVM
optimizer

LLVM IR EXELLVM code
generator

Traditional Cilk compiler pipeline

OpenCilk compiler pipeline

Impact on LLVM

116

Compiler component LLVM 6.0 (lines) Tapir/LLVM (lines)
Core middle-end

functionality 500,283 2,989

Base classes 62,488 0
Instructions 141,321 1,013

Memory behavior 18,907 536
Other analyses 84,348 17
Optimizations 193,219 1,423

Regression tests 3,482,802 5,745
Parallelism lowering 0 5,780
Parallel-tool support 0 3,341

Other 1,856,877 285
Total 5,839,962 18,140

__attribute__((const)) double norm(const double *X, int n);

void normalize(double *restrict Y, const double *restrict X,
int n) {

cilk_for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

Parallelize Normalize with Tapir

Test: Random vector, n=64M
Machine: Amazon AWS c4.8xlarge
Running time of serial code: TS = 0.312 s
1-core running time: T1 = 0.321 s
18-core running time: T18 = 0.081 s

Great work
efficiency:

TS/T1 = 97%

117

Work-Efficiency Improvement

118

0.4
0.5
0.6
0.7
0.8
0.9
1
1.1

nd
mi
s

ch
ole
sk
y

ma
nd
el
im
is

rem
du
p
nd
bfs

im
atc
h
qs
ort

nd
ma
tch fft

de
tbf
s ist

pk
rus
ka
l
dic
t
bs
m

rec
tm
ul he
at

ide
lau
na
y pk

s

pra
ng
e

ma
tm
ul

av
gf
ilte
r

rad
ixs
ort pc

k
ire
fin
e
ch
ull lu dc

t

str
ass
en

sam
ps
or
t
nd
st

oc
ttr
ee

cil
ks
ort
kd
tre
e

nq
ue
en
s

TS
T1

Reference Tapir/LLVM

Ideal
efficiency

Same as Tapir/LLVM, but the front-end handles
parallel language constructs the traditional way.

Decreasing difference between Tapir/LLVM and Reference

Improved work
efficiency by ≥ 5%.

99% work efficiency on
23 of 35 benchmarks.

OPENCILK COMPILER MIDDLE-END:
TAPIR

119

Background: LLVM IR
LLVM represents each function as a
control-flow graph (CFG).

120

exit

if.else

res = ɸ [add, if.else], [n, entry]
ret res

Control-flow graph (CFG)
entryint fib(int n) {

if (n < 2)
return n;

int x, y;
x = fib(n-1);
y = fib(n-2);
return x + y;

}

br (n < 2), exit, if.else

x = fib(n-1)
y = fib(n-2)
add = x + y
br exit

C code

Basic
block

Control-
flow edge

int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
y = baz(n);
cilk_sync;
return x + y;

}

A Simplified Tapir CFG

exit

det
y = @baz()
sync exit

x1 = load x
ret x1 + y

Simplified Tapir CFG
entry

cont

x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

Tapir represents
parallel tasks
asymmetrically.

Spawned
task Continuation

Tapir adds three constructs
to LLVM’s IR:
detach, reattach, and sync.

121

Serial Projection

y = @baz()
sync exit

x1 = load x
ret x1 + y

Tapir CFG
x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

y = @baz()
br exit

x1 = load x
ret x1 + y

CFG of serial projection
x = alloca int
br det

x0 = @bar()
store x, x0
br cont

exit

det

entry

cont

exit

det

entry

cont

The asymmetry models the
program’s serial projection.

If the program contains no
determinacy races, then it is
semantically equivalent to

its serial projection. 122

Detach and Reattach

exit

det
y = @baz()
sync exit

x1 = load x
ret x1 + y

Tapir CFG
entry

cont

x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

The detach and reattach instructions denote
the start and end of a spawned task.

Detached block

Continue
block

123

A detach spawns a task
starting at the detached
block to run in parallel

with the continue block.

A reattach terminates
a spawned task.

INVARIANT: A reattach must identify the same
continue block as its corresponding detach.

Nested Spawning in Tapir

exito

yo = @baz()
sync exito

x2 = load xo
ret x2 + yo

Tapir CFG entry

conti
x0 = @bar()
store xi, x0
reattach conti

Outer
spawned

task

Tapir supports nested spawning of tasks.

124

xo = alloca int
detach deto, conto

xi = alloca int
detach deti, conti

conto

deto

deti

Inner
spawned

task

x1 = load xi
x2 = x1 + yi
store xo, x2
reattach conto

exiti

yi = @baz()
sync exiti

125

Task Scopes

exito

yo = @baz()
sync exito

x3 = load xo
ret x3 + yo

Tapir CFG entry

conti
x0 = @bar()
store xi, x0
reattach conti

A task scope corresponds with a function or a
spawned task therein.

yi = @baz()
sync exiti

x1 = load xi
x2 = x1 + yi
store xo, x2
reattach conto

xo = alloca int
detach deto, conto

xi = alloca int
detach deti, conti

conto

exiti

deto

deti

Task
scopes

Sync
The sync instruction syncs tasks within its task
scope.

126

exito

yo = @baz()
sync exito

x3 = load xo
ret x3 + yo

Tapir CFG entry

conti
x0 = @bar()
store xi, x0
reattach conti

yi = @baz()
sync exiti

x1 = load xi
x2 = x1 + yi
store xo, x2
reattach conto

xo = alloca int
detach deto, conto

xi = alloca int
detach deti, conti

conto

exiti

deto

deti

The outer sync
waits for the
outer detach.

The nested sync
waits for the

nested detach.

int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
cilk_for (int i = 0; i < n; ++i)
loop_body(i);

y = baz(n);
cilk_sync;
return x + y;

}

Problem: Selective Syncs
What if a sync instruction shouldn’t apply to all
spawned tasks within the task scope?

127

The implicit cilk_sync
at the end of this loop
should not synchronize

the spawn of bar().

Sync Regions

exit

det y = @baz()
sync within sr, exit

x1 = load x
ret x1 + y

Tapir CFG
entry

cont

sr = @llvm.syncregion.start()
x = alloca int
detach within sr, det, cont

x0 = @bar()
store x, x0
reattach within sr, cont

Tapir’s constructs also use a sync region to
identify what spawned tasks a sync affects.

128

Sync-region
creation in a
task scope.

Tapir instructions
are associated with

sync regions.

A sync applies only to
detaches within the
same sync region.

Differentiating Syncs

exit

det

y = @baz()
sync within sr, exit

x1 = load x
ret x1 + y

Tapir CFG
entry sr = @llvm.syncregion.start()

loop_sr = @llvm.syncregion.start()
x = alloca int
detach within sr, det, cont

x0 = @bar()
store x, x0
reattach within sr, cont

Different parallel language constructs can use
different sync regions.

129

Tapir
parallel loop

A parallel loop can use its own
sync region to ensure its sync
applies only to loop iterations.

Hands-On: Kaleidoscope
In this hands-on, you will use OpenCilk to add
spawn and sync expressions to a toy
programming language, Kaleidoscope1.

130

def binary : 1 (x y) y;
def fib(n)
if (n < 2) then n
else
var x, y in

x = fib(n-1) :
y = fib(n-2) :
(x + y);

1 https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/index.html

Kaleidoscope code
def binary : 1 (x y) y;
def fib(n)
if (n < 2) then n
else
var x, y in
(spawn x = fib(n-1)) :
y = fib(n-2) :
sync
(x + y);

Parallel Kaleidoscope code
in fib.k

Hands-On: Kaleidoscope
The code in toy-spawn-sync.cpp uses OpenCilk
to implement a simple Parallel Kaleidoscope
compiler, with the following components:
• A lexer and parser translate Kaleidoscope

code into an abstract syntax tree (AST).
• Code-generator routines generate Tapir and

LLVM IR from the AST.
• The driver uses LLVM’s JIT interface to

optimize the Tapir intermediate
representation, generate machine code, and
run the executable.

131

Current focus

Hands-On: Kaleidoscope (~20 min)
HANDS-ON: Complete the code-generator
routines to produce Tapir for spawn and sync.
• Follow the instructions, marked HANDS-ON, in
toy-spawn-sync.cpp to finish implementing
SpawnExprAST::codegen() and
SyncExprAST::codegen().

• In the Docker container, test your code on
different worker counts:

132

$ cd /tutorial
$ make toy-spawn-sync
$./toy-spawn-sync < fib.k
$ CILK_NWORKERS=1 ./toy-spawn-sync < fib.k

May take a couple
of seconds.

Compiler Pipeline with Tapir

133

Tapir
lowering

LLVM
IR

Machine
code gen.

EXE

Cilk Clang Tapir LLVM
optimizer

Tapir

Transforms Tapir instructions
into ordinary LLVM IR, based

on a Tapir target.

Includes traditional LLVM optimizations
and new Tapir-specific optimizations,

such as parallel-loop stripmining.

Tapir Lowering

exit

det

y = @baz()
sync exit

x1 = load x
ret x1 + y

Simplified Tapir CFG
entry

cont

x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

Tapir lowering outlines spawned tasks into
separate functions and inserts runtime code.

134

PseudoCFG after lowering

y = @baz()
@cilk_sync(&sf)
x1 = load x
res = x1 + y
@cilk_epilogue(&sf)
ret res

x = alloca int
sf = alloca cilk_stack_frame
@cilk_enter_frame(&sf)
chk = !@cilk_prepare_spawn(&sf)
br chk, sp, cont

@foo.outline(x)
br cont

entry

sp

cont

Runtime
code

Outlined function
containing contents
of original det block.

BREAK

135

PRODUCTIVITY TOOLS: CILKSAN
AND CILKSCALE

136

Cilksan and Cilkscale
OpenCilk’s productivity tools, Cilksan and
Cilkscale, use compiler instrumentation.
• Each tool is implemented as a library, which

is linked to the executable.
• Each tool has a corresponding compiler pass

in the OpenCilk compiler that inserts
instrumentation in the form of calls into the
tool’s library.

137

Tool Compiler Pass
The OpenCilk compiler inserts instrumentation
just before Tapir lowering.

138

Tapir
lowering

LLVM
IR

Machine
code gen.

EXE

Cilk Clang Tapir LLVM
optimizer

Tapir

Tool
instrumen-

tation
Tapir

Example: Cilksan Instrumentation

139

exit

det

@csan_before_call()
y = @baz()
@csan_after_call()
@csan_sync()
sync exit

@csan_load(x)
x1 = load x
@csan_func_exit()
ret x1 + y

Tapir CFG
entry

cont

@csan_func_entry()
x = alloca int
@csan_alloca(x)
@csan_detach()
detach det, cont

@csan_task()
@csan_before_call()
x0 = @bar()
@csan_after_call()
@csan_store(x)
store x, x0
@csan_task_exit()
reattach cont

The OpenCilk compiler
inserts Cilksan
instrumentation at
memory operations,
control-flow operations,
and Tapir instructions.

Driving the Cilksan Library

140

When the program
is run, the
instrumentation
drives the tool’s
logic in the Cilksan
library to check for
races.

exit

@csan_before_call()
y = @baz()
@csan_after_call()
@csan_sync()
sync exit

@csan_load(x)
x1 = load x
@csan_func_exit()
ret x1 + y

Tapir CFG
entry

cont

@csan_func_entry()
x = alloca int
@csan_alloca(x)
@csan_detach()
detach det, cont

@csan_task()
@csan_before_call()
x0 = @bar()
@csan_after_call()
@csan_store(x)
store x, x0
@csan_task_exit()
reattach cont

Computes which
operations are

logically in parallel.

Records
memory reads

and writes.

How Cilksan Works (Intuition)

141

Intuitively, Cilksan maintains the computation’s
trace dag to find parallel memory accesses.

Read x

Write x

Write x

No race

Race!Because race-
detection is
based on the
dag, Cilksan’s
race-detection
is guaranteed,
regardless of
scheduling.

Race!

How Cilksan Works

142

Read x

Write x

Write x

No race

Race!Storing the trace
dag is inefficient
in practice.

Instead, Cilksan
implements the
SP-bags
algorithm [FL99] to
achieve the
same effect.

[FL99] Feng, Leiserson. Efficient Detection of Determinacy Races in Cilk Programs.
Theory of Computing Systems, 1999.

Race!

Optimizing Cilksan Instrumentation

143

exit

det

@csan_before_call()
y = @baz()
@csan_after_call()
@csan_sync()
sync exit

@csan_load(x)
x1 = load x
@csan_func_exit()
ret x1 + y

Tapir CFG
entry

cont

@csan_func_entry()
x = alloca int
@csan_alloca(x)
@csan_detach()
detach det, cont

@csan_task()
@csan_before_call()
x0 = @bar()
@csan_after_call()
@csan_store(x)
store x, x0
@csan_task_exit()
reattach cont

The Cilksan compiler
pass performs
static race detection
to avoid inserting
unnecessary
instrumentation.

Hands-On: Kaleidoscope parfor
The toy-parfor.cpp code adds parfor, a
parallel-for construct, to Kaleidoscope.

144

def fibloop(n)
parfor i = 0, i < n in
fib(i);

Kaleidoscope parallel loop
in fib-loop.k

But the construct has a bug in it that results in
a determinacy race!

Hands-On: Kaleidoscope parfor
Just like toy-spawn-sync.cpp, the code in
toy-parfor.cpp uses OpenCilk to implement a
simple Parallel Kaleidoscope compiler:
• A lexer and parser translate Kaleidoscope

code into an abstract syntax tree (AST).
• Code-generator routines generate Tapir and

LLVM IR from the AST.
• The driver uses LLVM’s JIT interface to

optimize the Tapir intermediate
representation, generate machine code, and
run the executable.

145

Current focus

Hands-On: Kaleidoscope parfor
(~20 min)
HANDS-ON: Use Cilksan to identify the race in
the parfor implementation.
• Follow the instructions, marked HANDS-ON, in
toy-parfor.cpp (in FunctionAST::codegen()
and InitializeModuleAndPassManager()) to
enable the use of Cilksan.

• In the Docker container, run the following to
observe the race in parfor:

• OPTIONAL, HARD: Fix the race.
146

$ cd /tutorial
$ make toy-parfor
$./toy-parfor -O0 --run-cilksan < fib-loop.k

Parallel Loops in Tapir

147

The parfor implementation was made by
copying the implementation of for and then
adding Tapir instructions.

i3 = load i
next_i = i3 + i
store i, next_i
br pcond

detach body, latch

sync after

i2 = load i
@fib(i2)
reattach latch

CFG for
fibloopentry

pcond

ploop

body

latch

NOTE: Loop
body is

spawned.

exit

Race on i!

i1 = load i
br (i1 < n), ploop, exit

i = alloca int
store i, 0
br pconddef fibloop(n)

parfor i = 0, i < n in
fib(i);

Fixing the Race

148

Here is one way to fix the race:

i3 = load i
next_i = i3 + i
store i, next_i
br pcond

detach body, latch

sync after

ii = alloca int
store ii, i1
i2 = load ii
@fib(i2)
reattach latch

entry

pcond

ploop

body

latch

exit

i1 = load i
br (i1 < n), ploop, exit

i = alloca int
store i, 0
br pcond

Modified
code

Tapir lowering ensures
that i1 is passed by value
to the outlined function.

CFG for
fibloopdef fibloop(n)

parfor i = 0, i < n in
fib(i);

Lowering Parallel Loops in Tapir

149

During Tapir lowering, Tapir’s LoopSpawning
pass converts parallel loops to spawns and
syncs using recursive divide-and-conquer.
• Tapir loops are first canonicalized using

standard LLVM loop transformations.
• The LoopSpawning pass outlines each*

parallel loop into a separate function that
implements the parallel divide-and-conquer
recursion using Tapir.

• Those generated Tapir instructions are later
lowered to runtime calls.

*To prevent compiler misoptimization,
only marked loops are transformed.

150

www.opencilk.org
contact@opencilk.org

http://www.opencilk.org/

Support Acknowledgments
} National Science Foundation: OpenCilk development is

supported in part by the National Science Foundation
under Grant No. CNS-1925609. Any opinions, findings,
and conclusions or recommendations expressed in this
tutorial are those of the presenters and do not necessarily
reflect the views of the National Science Foundation.

} United States Air Force Research Laboratory: OpenCilk
development is supported in part by the United States Air
Force Research Laboratory and was accomplished under
Cooperative Agreement Number FA8750-19-2-1000. The
views and conclusions contained in this tutorial are those
of the presenters and should not be interpreted as
representing the official policies, either expressed or
implied, of the United States Air Force or the U.S.
Government. The U.S. Government is authorized to
reproduce and distribute content for Government purposes
notwithstanding any copyright notation herein.

151

152

