
• By joining this Zoom web tutorial session, you 
automatically consent to the recording of all video, 
audio, and chat-room content.                  

• Furthermore, you grant permission to the OpenCilk
organization to share the recordings, in full or in 
part, internally and with third parties.

• Please join without video and stay muted if you do 
not wish to be recorded.  

Slides downloadable at
http://opencilk.org/pact21/opencilk-pact-2021.pdf

This Presentation Will Be Recorded
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• Join the Slack channel: 
https://tinyurl.com/OpenCilkSlack, 
channel #pact2021.

• You will need Docker set up to do the 
hands-on exercises.

• Download the Docker image:
https://tinyurl.com/OpenCilkDocker

• We provide a script, docker.sh, to help you 
use the Docker image: 
https://tinyurl.com/OpenCilkDockerSh

Getting Started
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• To setup the Docker image initially:

• To run code in the Docker container:

• In the Docker container, verify the version 
of clang:

Using the Docker Image

$ ./docker.sh init

$ ./docker.sh run
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$ clang --version
clang version 12.0.0



• OpenCilk is an open-source implementation 
of the Cilk concurrency platform.

• Cilk extends C/C++ with a small set of 
linguistic control constructs to support fork-
join parallelism.

• Cilk focuses on:
§ Shared-memory multiprocessing
§ Client-side multiprogrammed environments
§ Regular and irregular parallel computations
§ Predictable and composable performance
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What Is OpenCilk?



• A processor-oblivious programming model 
with simple, effective, and composable 
language constructs for expressing 
parallelism.

• A provably and practically efficient work-
stealing scheduler.

• A suite of productivity tools:
§ Cilksan: Determinacy race detector
§ Cilkscale: Scalability analyzer
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Features of Cilk



OpenCilk System Architecture
} Compatibility — Provide backward compatibility with 

Cilk Plus minus vector ops (i.e., Cilk++).
} Open source — Distribute under liberal open-source 

licenses.
} Componentization — Divide system into distinct 

software components with well-defined interfaces.
} Integration — As individual components are enhanced, 

ensure that they continue to interoperate with the 
entire platform.

} Reliability — Provide a suite of extensive tests and 
benchmarks to ensure that releases are stable, perform 
well, and are free of serious bugs.
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BASICS OF RECURSIVE
FORK-JOIN PARALLEL PROGRAMMING
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Nested Parallelism in Cilk
uint64_t fib(uint64_t n) {

if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

The named child
function may execute in 
parallel with the parent
caller.

Control cannot pass this 
point until all spawned 
children have returned.

Cilk keywords grant permission for parallel execution.  
They do not command parallel execution (processor 
oblivious). 9



Loop Parallelism in Cilk

The iterations of 
a cilk_for loop 
may execute in 
parallel.

cilk_for (int i=1; i<n; ++i) {
for (int j=0; j<i; ++j) {

int temp = A[i][j];
A[i][j] = A[j][i];
A[j][i] = temp;

}
}

Example: 
In-place 
matrix 
transpose

a11 a12 ⋯ a1n

a21 a22 ⋯ a2n

⋮ ⋮ ⋱ ⋮
an1 an2 ⋯ ann

a11 a21 ⋯ an1

a12 a22 ⋯ an2

⋮ ⋮ ⋱ ⋮
a1n a2n ⋯ ann

A AT

Cilk keywords grant permission for parallel execution.  
They do not command parallel execution (processor 
oblivious). 10



Serial Projection
Cilk source

uint64_t fib(uint64_t n) {
if (n < 2) {

return n;
} else {

uint64_t x, y;
x = fib(n-1);
y = fib(n-2);

return (x + y);
}

}

serial projection

The serial projection of a Cilk program is always a 
legal interpretation of the program’s semantics.

To obtain the serial 
projection:

#define cilk_spawn
#define cilk_sync
#define cilk_for for

Moreover, a Cilk program executing on one core 
behaves exactly the same as the execution of its 
serialization.

uint64_t fib(uint64_t n) {
if (n < 2) {

return n;
} else {

uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}
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Scheduling in Cilk
• Cilk allows the 

programmer to express 
logical parallelism in an 
application.

• The Cilk scheduler 
maps the executing 
program onto the 
processor cores 
dynamically at runtime.

• Cilk’s work-stealing 
scheduler is provably 
efficient.

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

…

Memory I/O

$

P

$

P

$

P

Network

12



Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.

P P PP

Spawn!

Cilk’s Work-Stealing Scheduler
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P P PP

Spawn!Spawn! Spawn!

Cilk’s Work-Stealing Scheduler
Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.
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P P PP

Return!

Cilk’s Work-Stealing Scheduler
Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.
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P P PP

Return!

Cilk’s Work-Stealing Scheduler
Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.
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P P PP

Steal!

Cilk’s Work-Stealing Scheduler

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.
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P P PP

Cilk’s Work-Stealing Scheduler

When a worker runs out of work, it steals
from the top of a random victim’s deque.

Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.

18



P P PP

Spawn!

Cilk’s Work-Stealing Scheduler

Resume execution upon a successful steal.

Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque 
like a stack.

19



OpenCilk Platform
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Compiler

Parallel 
Performance

Linker
Runtime 
System

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
}

Binary

P⋯PPProgram
input The compiler and 

runtime library 
together implement 

the scheduler.



Dev Flow: Serial Testing First

21

C/C++ Compiler

Reliable single-
threaded code 

Binary

P
Serial

regression
tests

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
} Cilk code

uint64_t fib(uint64_t n) {
if (n < 2) {
return n;

} else {
uint64_t x, y;
x = fib(n-1);
y = fib(n-2);
return (x + y);

}
} serial projection

Cilk's serial 
projection 

enables simple 
serial testing.



Parallel Testing
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Cilk Compiler 
with Cilksan

Binary

P
Parallel

regression
tests

uint64_t fib(uint64_t n) {
if (n < 2) { return n; }
else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
} Cilk code

Cilksan finds and 
localizes race bugs.

Reliable multi-
threaded code 



Scalability Analysis

23

Cilk Compiler 
with Cilkscale

Binary

P
Parallel

regression
tests

uint64_t fib(uint64_t n) {
if (n < 2) { return n; }
else {
uint64_t x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x + y);

}
} Cilk code

Cilkscale analyzes 
how well your 

program will scale 
to larger machines.

Scalability
report



Hands-On with Cilk Programming
• Take a look at nqueens.c.
• How do you parallelize this code?
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The N-Queen Problem
Problem
Place n queens on an n × n chessboard so that no 
queen attacks another, i.e., no two queens in any row, 
column, or diagonal.  Count the number of possible 
solutions.

25



Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.
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Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.
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Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.
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Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.

Backtrack!
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Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.
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Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.

Backtrack!
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Backtracking Search
Strategy
Try placing queens row by row.  If you can’t place a 
queen in a row, backtrack.

Backtrack!
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Board Representation
The board can be represented as an array of integers.

2

4

6

0

7

1

3

5

Representation

Column 
where the 
queen in this 
row is placed.

0 1 2 3 4 5 6 7
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Hands-On with Cilk Programming
• Take a look at nqueens.c.
• How do you parallelize this code?

• In the Docker container, compile and run the 
code once parallelized:

34

$ cd /tutorial
$ make nqueens
$ ./nqueens 13



Racy NQueens Code (racy-nqueens.c)
int nqueens(int n, int row, char *board) {
int *count;
char *new_board;
int solNum = 0;
if (n == row) { return 1; } // end of the board; found a solution

count = (int *) alloca(n * sizeof(int));
(void) memset(count, 0, n * sizeof (int));

new_board = (char *) alloca((row + 1) * sizeof (char));
memcpy(new_board, board, row * sizeof (char));

for (int col = 0; col < n; col++) {
new_board[row] = col;
if (no_conflict(row + 1, new_board))
count[col] = cilk_spawn nqueens(n, row + 1, new_board);

}
cilk_sync;

for (int i = 0; i < n; i++) { solNum += count[i]; }

return solNum;
}

Where’s the 
race?

35



DEBUGGING RACE CONDITIONS
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int x = 0;
cilk_for (int i=0, i<2, ++i) {
x++;

}
assert(x == 2);

Determinacy Races
DEFINITION: A determinacy race occurs when two 
logically parallel instructions access the same 
memory location and at least one of the 
instructions performs a write.

A

B C

D

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D

Example

Trace

37



A Closer Look

r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);

x++;

int x = 0;

assert(x == 2);

x++;

A

B C

D
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Race Bugs

1

2

3

4

5

67

8

?

x

?

r1

?

r2

00

01

0

011

1

1

1
r1 = x;

r1++;

x = r1;

r2 = x;

r2++;

x = r2;

x = 0;

assert(x == 2);
39

DEFINITION: A determinacy race occurs when two 
logically parallel instructions access the same 
memory location and at least one of the 
instructions performs a write.



Types of Races

A B Race Type
read read none
read write read race
write read read race
write write write race

Two sections of code are independent if they 
have no determinacy races between them.

Suppose that instruction A and instruction B
both access a location x, and suppose that 
A∥B (A is parallel to B).

40



In Contrast, Data Races
DEFINITION: A data race occurs when two logically 
parallel instructions holding no locks in common
access the same memory location and at least one 
of the instructions performs a write.

WARNING: Codes that use locks are 
nondeterministic by intention. 

Although data-race-free programs obey atomicity 
constraints, they can still be nondeterministic, 
because acquiring a lock can cause a determinacy 
race with another lock acquisition.

41



Determinism
Cilk supports writing deterministic parallel 
programs, in which every memory location is 
updated with the same sequence of values in 
every execution.
• The program always behaves the same way

on a given input, regardless of scheduling.
• For many interesting and practical programs, 

there is no need to use locks or other 
concurrency mechanisms.

42

Advantage: DEBUGGING!



Cilksan Race Detector
• The Cilksan-instrumented program is produced by 

compiling with the –fsanitize=cilk command-line 
compiler switch.

• If an ostensibly deterministic Cilk program run on a 
given input could possibly behave any differently than 
its serial projection, Cilksan guarantees to report and 
localize the offending race.

• Cilksan employs a regression-test methodology, 
where the programmer provides test inputs.

• Cilksan identifies filenames, lines, and variables 
involved in races, including stack traces.

• Ensure that all program files are instru-
mented, or you’ll miss some bugs.

• Cilksan is your best friend. 43



Hands-On with Cilksan (~15 min)
• In the Docker container, compile racy-nqueens.c

with Cilksan enabled:

44

$ cd /tutorial
$ make -B racy-nqueens CILKSAN=1
$ ./racy-nqueens 9

• You should see a race report.  Where is the race?
• How do you fix the race?



Hands-On with Cilksan
Race detected at address 7f460b325874
* Read 43ef18 nqueens ./racy-nqueens.c:73:3
| `-to variable board (declared at ./racy-nqueens.c:58)
+ Call 43f73b nqueens ./racy-nqueens.c:78:29
+ Spawn 43efd7 nqueens ./racy-nqueens.c:78:29
|* Write 43efa9 nqueens ./racy-nqueens.c:76:18
|| `-to variable new_board (declared at ./racy-nqueens.c:60)
\| Common calling context
+ Call 43f73b nqueens ./racy-nqueens.c:78:29
+ Spawn 43efd7 nqueens ./racy-nqueens.c:78:29
[...]
+ Call 43f42b main ./racy-nqueens.c:111:9
Allocation context
Stack object new_board (declared at ./racy-nqueens.c:60)
Alloc 43eef8 in nqueens ./racy-nqueens.c:72:16
Call 43f73b nqueens ./racy-nqueens.c:78:29
Spawn 43efd7 nqueens ./racy-nqueens.c:78:29

[...]
Call 43f42b main ./racy-nqueens.c:111:9

45

72
73
74
75
76
77
78
79

[...]
new_board = (char *) alloca((row + 1) * sizeof (char));
memcpy(new_board, board, row * sizeof (char));

for (int col = 0; col < n; col++) {
new_board[row] = col;
if (no_conflict(row + 1, new_board))
count[col] = cilk_spawn nqueens(n,row+1,new_board);

}
[...]

racy-nqueens.c



WHAT IS PARALLELISM?

46



Execution Model
Example:
fib(4)

47

int fib(int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}



int fib(int n) {
if (n < 2) return n;
else {

int x, y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return x + y;

}
}

Execution Model
Example:
fib(4)

The computation dag
unfolds dynamically.

4

3

2

2

1

1 1 0

0
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Trace Dag

• A parallel instruction stream (trace) is a dag G = (V, E).
• Each vertex v ∈ V is a strand: a sequence of instructions 

not containing a spawn, sync, or return from a spawn.
• An edge e ∈ E is a spawn, call, return, or continue e 

edge.
• Loop parallelism (cilk_for) is converted to spawns and 

syncs using recursive divide-and-conquer.

spawn edge return edge
continue edge

initial strand final strand

strand

call edge

49



How Much Parallelism?

Assuming that each strand executes in unit time, 
what is the parallelism of this computation?
In other words, what is the maximum possible 
speedup of this computation, where speedup is 
how much faster the parallel code runs 
compared to the serial code?

50



TP = execution time on P processors

T1 = work
= 18

Performance Measures

51



= 18 = 9
T1 = work T∞ = span*

*Also called critical-path length
or computational depth.

TP = execution time on P processors

Performance Measures

52



WORK LAW
TP ≥ T1/P

SPAN LAW
TP ≥ T∞

Performance Measures

= 18 = 9
T1 = work T∞ = span

TP = execution time on P processors

53



DEFINITION: T1/TP = speedup on P processors.

• If T1/TP < P, we have sublinear speedup.
• If T1/TP = P, we have (perfect) linear speedup.
• If T1/TP > P, we have superlinear speedup, 

which is not possible in this simple 
performance model, because of the WORK LAW
TP ≥ T1/P.

Speedup

54



Parallelism
Because the SPAN LAW dictates that 
TP ≥ T∞, the maximum possible 
speedup given T1 and T∞ is
T1/T∞ = parallelism

= the average 
amount of work 
per step along 
the span

= 18/9
= 2 .

55



Parallelism: T1/T∞ = 2.125

Work:  T1 = 17
Span:  T∞ = 8

Example: fib(4)
Assume for simplicity 
that each strand in 
fib(4) takes unit 
time to execute.

Using many more than 2 processors can 
yield only marginal performance gains.

56



Cilk Performance Bound

57

Theorem [BL94].  A work-stealing scheduler can 
achieve expected running time

TP ≤ T1 / P + O(T∞)
on P processors.

Definition. TP — execution time on P processors
T1 — work T∞ — span

T1 / T∞ — parallelism

In Practice.  Cilk's scheduler achieves execution 
time 

TP ≈ T1/P + T∞
on P processors.



Linear Speedup
Corollary.  Cilk scheduler achieves near-perfect 
linear speedup whenever T1/T∞ ≫ P.

Proof.  Since T1/T∞ ≫ P is equivalent to 
T∞ ≪ T1/P, Cilk's performance bound gives us

TP ≤ T1/P + T∞
≈ T1/P . (first term dominates)

Thus, the speedup is T1/TP ≈ P . ■
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Cilkscale Scalability Analyzer
• The OpenCilk compiler provides a scalability analyzer

called Cilkscale, which is similar in some ways to Intel’s 
Cilkview tool. 

• Like the Cilksan race detector, Cilkscale uses compiler 
instrumentation to analyze a serial execution of a 
program.

• Cilkscale computes work and span to derive upper bounds 
on parallel performance of all or just part of your 
program.

• Cilkscale is really three tools in one:
• an analyzer,
• an autobenchmarker,
• a visualizer.
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BREAK
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CHEETAH RUNTIME SYSTEM
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Cilk Performance Bound

62

Theorem [BL94].  A work-stealing scheduler can 
achieve expected running time

TP ≤ T1 / P + O(T∞)
on P processors.

Time workers 
spend working.

Time workers 
spend stealing.

If the program has ample parallelism, i.e.,
T1/T∞ ≫ P , then the first term dominates, and 
TP ≈ T1/P.



Parallel Speedup
Let TS denote the work of a serial program.  
Suppose the serial program is parallelized.  
Let T1 denote the work of the parallel 
program and let T∞ denote the span of the 
parallel program.
Parallel speedup is measured by TS/TP .

To achieve linear speedup on P processors 
over the serial program, i.e., TP ≈ TS/P, the 
parallel program must exhibit: 
• Ample parallelism: T1/T∞≫ P .
• High work efficiency: TS/T1 ≈ 1.
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The Work-First Principle
To optimize the execution of programs with sufficient 
parallelism, the implementation of the Cilk scheduler 
works to maintain high work-efficiency by abiding by 
the work-first principle:

Optimize for the ordinary serial 
execution, at the expense of some 

additional overhead in steals.
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CHEETAH RUNTIME SYSTEM:
REQUIRED FUNCTIONALITIES
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P P PP

Steal!

Cilk’s Work-Stealing Scheduler

• Single-worker execution mirrors that of its serial projection.
• When a worker runs out of work, it steals from the top of a 

random victim’s deque.

Each worker (processor) maintains a deque of ready 
work, and it manipulates the bottom of the deque like 
a stack.
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Cilk’s Execution Model
Example:
fib(4)

The computation dag
unfolds dynamically.

4

3

2

2

1

1 1 0

0
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

A Worker’s Behavior Mirrors 
Serial Execution

Example:
fib(4)

4

3

P1

P1 %rip
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

A Worker’s Behavior Mirrors 
Serial Execution

Example:
fib(4)

4

3

2

P1

P1 %rip
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

A Worker’s Behavior Mirrors 
Serial Execution

Example:
fib(4)

4

3

2

1

P1

P1 %rip
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Successful Steals Create Parallelism

Example:
fib(4)

4

3

2

1

P1 %rip

P2
P2 %rip

P2 resumes fib(4)
mid-execution.

71P1



int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Successful Steals Create Parallelism

Example:
fib(4)

4

3

2

2

1

P1 %rip

P2
P2 %rip

72P1



int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Successful Steals Create Parallelism

Example:
fib(4)

4

3

2

2

1

P1 %rip

P2

P2 %rip

P3

P3 %rip

P3 resumes fib(3)
mid-execution.

73P1



Views of stack

4 4

2

4

3

Cilk supports C’s rule for pointers: A pointer to stack 
space can be passed from parent to child, but not from 
child to parent.

Cilk’s cactus stack supports 
multiple views in parallel.

Cactus Stack

P1 P2 P3
4

3

2

2

1 P1

P2P3
3

2

1
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Syncs

Example:
fib(4)

4

3

2

2

1

0 P1

P1 %rip

P2

P2 %rip

P3

P3 %rip
Sync?Can’t sync
yet!

75



Required Functionalities
• Each worker needs to keep track of its own 

execution context, including work that it is 
responsible for / available to be stolen.

• A worker after a successful steal, can 
resume the stolen function mid-execution.

• Upon a sync, a worker needs to know 
whether there is any spawned subroutine 
still executing on another worker.

• The runtime must maintain the cactus 
stack abstraction as the parallel execution 
unfolds.
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Cheetah Runtime Data Structures
The Cheetah runtime utilizes three basic data 
structures as workers execute work:
• A work deque storing the execution 

context of ready work.
• A Cilk stack frame structure to represent 

each spawning function (Cilk function).
• A closure tree to represent function 

instances that has every been stolen to 
support true parallel execution.
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Division of Labor
The work-first principle guides the division of the Cilk
scheduler between the compiler and the runtime library.

Compiler
• Manages a handful of small data structures (e.g., 

initialization / operations on Cilk stack frames and 
deques).

• Implements optimized fast paths for execution of 
functions when no steals have occurred (i.e., no actual 
parallelism has been realized).

Runtime library
• Manages the more heavy-weight data structures (e.g., 

the closure tree).
• Handles slow paths of execution, e.g., when a steal 

occurs.
78



CHEETAH RUNTIME SYSTEM:
ORGANIZATION OF THE RUNTIME DATA
STRUCTURE
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Deque of Frames
Each Cilk worker maintains a deque of 
references to Cilk stack frames* containing 
work available to be stolen.

Cactus stack

Deque 4

3

2

2

1

P1
head

tail

Worker

current

*We’ll discuss what a Cilk stack 
frame contains later. 80



Spawn
When spawning, the current frame is pushed 
onto the bottom of the deque.

Cactus stack

Deque 4

3

2

2

1

P1
head

tail

Worker

1
current
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Return from Spawn
When returning from a spawn, the current 
frame is popped from the bottom of the deque.

Cactus stack

Deque 4

3

2

2

1

P1
head

tail

Worker

1
current
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Stealing Frames

Cactus stack

Deque

4

3

2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

Some coordination 
is required.

Workers operate on the bottom of the deque, while 
thieves try to steal work from the top of the deque.
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Synchronizing Thieves and Workers
Cilk uses a lock associated with each deque to perform 
synchronization.

Cactus stack

Deque

4

3
2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

🔒

Question: Is it more important 
to optimize the operations of 
workers or those of thieves? Answer: Operations 

of workers. 84



Popping the Deque

85

When a worker is about to return from a 
spawned function, it needs to pop the stack 
frame from the tail of the deque.  There are 
two possible outcomes:
1. If the pop succeeds, then the execution 

continues as normal.
2. If the pop fails, then the worker is out of 

work to do, and it becomes a thief and tries 
to steal.

Question: Which case 
is more important to 
optimize?

Answer: Case 1.



The THE Protocol
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void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

The worker and the thief 
coordinate using 
the THE protocol 



The THE Protocol
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void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

Observation I: 
Synchronization is only 

necessary when the deque is 
almost empty.



The THE Protocol
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void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

Observation II: The pop 
operation is more likely to 

succeed than fail.



The THE Protocol
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void push() { tail++; }
bool pop() {
tail--;
if (head > tail) {
tail++;
lock(L);
tail--;
if (head > tail) {

tail++;
unlock(L);
return FAILURE;

}
unlock(L);

}
return SUCCESS;

}

Worker protocol

bool steal() {
lock(L);
head++;
if (head > tail) {
head--;
unlock(L);
return FAILURE;

}
unlock(L);
return SUCCESS;

}

Thief protocol

The Work-First 
Principle: Optimize the 
operations of workers.

Workers pop the 
deque optimistically…

…and only grab the deque’s lock 
if the deque appears to be empty.

Thieves always
grab the lock.



Successful Steal
Workers operate on the bottom of the deque, while 
thieves try to steal work from the top of the deque.

Cactus stack

Deque

4

3

2

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

🔒

Need to set up the thief’s 
stack and processor state 
after a successful steal.
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Saving and Restoring Processor State
To save and restore processor state, the Cilk compiler 
allocates a local buffer in each frame that spawns.

x = cilk_spawn fib(n-1);

Cilk code
BUFFER ctx;
SAVE_STATE(&ctx);
if (!setjmp(&ctx))
x = fib(n-1);

Compiled pseudocode

Buffer to store 
processor state.

Save processor state into 
ctx and allow a worker to 
resume the continuation.
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Deque References to Frames
Worker deques store references to the buffers in each 
frame, from which thieves can retrieve processor state.

Cactus stack

Deque

4

3

2

P1
head

tail

Worker

current

DequeP2
head

tail

Thief

current

ctx

ctx

ctx

%rbx, %r10, …
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int fib (int n) {
if (n<2) return (n);
else {
int x,y;
x = cilk_spawn fib(n-1);
y = fib(n-2);
cilk_sync;
return (x+y);

}
}

Semantics of Sync

Example:
fib(4)

2

1P2

A cilk_sync waits on child frames, not just on workers.

3

2

0 P1

P3

4
Can’t sync

yet!

1P4
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Nested Synchronization

P1

P2

P3

P5

Cilk supports nested synchronization, where a frame 
waits only on its child subcomputations.

Waiting on 
3 children.

P4

Waiting on 
2 children.

How does Cilk keep track 
of who’s waiting on who?94



Closure Tree

P1

P2

P3

P5
P4

The Cilk runtime maintains a tree of closures to keep 
track of synchronization information.

active 
closure

suspended
closure

INVARIANT: There is a closure 
associated with every frame that 
has ever been stolen or is sitting 

on top of a worker’s deque.
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Closure Data

P1 P2 P3

To maintain the state of the running program, 
each closure maintains:

• A join counter of the 
number of outstanding 
spawned children.

• References to parent
and child closures.

• References into the 
corresponding Cilk
stack frames on the 
cactus stack.
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Common Case for Sync
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Question: If the program has ample parallelism, 
what do we expect typically happens when the 
program execution reaches a cilk_sync?

Answer: The executing function contains no 
outstanding spawned children.

How does the 
scheduler optimize 

for this case?



Managing the Full-Frame Tree: Sync
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P P PP

spawned
called
called

spawned
called

spawned
called

spawned

called

The flag field in a Cilk stack frame 
maintains the frame’s status, which is 
set when stolen.  Only stolen spawning 

frames need nontrivial sync.



BUFFER ctx;
…
if (!setjmp(&ctx))
__cilkrts_sync(&ctx);

Compiled Code for Sync

C pseudocode
cilk_sync;

Cilk code

Like cilk_spawn, a cilk_sync is compiled 
using setjmp, in order to save the processor’s 
state when the frame is suspended.

Same buffer as 
used for spawns.

Call into the runtime 
to suspend the frame.
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Full Compiler/Runtime ABI
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C pseudocode of
compiled result

Cilk
compiler

int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
y = baz(n);
cilk_sync;
return x + y;

}

int foo(int n) {
__cilkrts_stack_frame_t sf;
__cilkrts_enter_frame(&sf); 
int x, y;
/* s = cilk_spawn bar(n); */
if (!setjmp(sf.ctx))

bar_spawn_helper(&x, n);
y = baz(n);
/* cilk_sync */
if (sf.flags & CILK_FRAME_UNSYNCHED)

if (!setjmp(sf.ctx))
__cilkrts_sync(&sf);

int result = x + y;
__cilkrts_leave_frame(&sf);
return result;

}

void bar_spawn_helper(int *x, int n) {
__cilkrts_stack_frame sf;
__cilkrts_enter_frame_helper(&sf);
__cilkrts_detach();
*x = bar(n);
__cilkrts_leave_frame_helper(&sf);

}



Full Compiler/Runtime ABI
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int foo(int n) {
__cilkrts_stack_frame_t sf;
__cilkrts_enter_frame(&sf); 
int x, y;
/* s = cilk_spawn bar(n); */
if (!setjmp(sf.ctx))

bar_spawn_helper(&x, n);
y = baz(n);
/* cilk_sync */
if (sf.flags & CILK_FRAME_UNSYNCHED)

if (!setjmp(sf.ctx))
__cilkrts_sync(&sf);

int result = x + y;
__cilkrts_leave_frame(&sf);
return result;

}

void bar_spawn_helper(int *x, int n) {
__cilkrts_stack_frame sf;
__cilkrts_enter_frame_helper(&sf);
__cilkrts_detach();
*x = bar(n);
__cilkrts_leave_frame_helper(&sf);

}

save execution context 
to prepare for spawn

push the Cilk stack frames 
corresponding to the spawning 

of bar onto the deque

clean up and try to 
pop the deque

save execution context 
in the event of a non-

trivial sync

Cilk stack frame contains 
the buffer for saving 
execution context



Hands-On with Cheetah
• First: cheetah runtime overview
• Compile and run nqueens:

• Enable stats in cheetah: set CILK_STATS to 1 in 
cheetah/runtime/rts-config.h.

• Compile cheetah and run nqueens again.
• Add instrumentation to correct stats output.

(Be sure to recompile nqueens if you modify 
cilk2c_inline.c)
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$ cd /tutorial
$ make cheetah nqueens
$ ./nqueens 13



CHEETAH RUNTIME SYSTEM:
DESIGN CHOICES
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The Work-First Principle
To optimize the execution of programs with sufficient 
parallelism, the implementation of the Cilk runtime 
system works to maintain high work-efficiency by 
abiding by the work-first principle:

Optimize for the ordinary serial 
execution, at the expense of some 

additional overhead in steals.
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Division of Labor
The work-first principle guides the division of the Cilk
runtime system between the compiler and the runtime 
library.
• The compiler implements optimized fast paths for 

execution of functions when no steals have 
occurred (i.e., no actual parallelism has been 
realized).

• The runtime library handles slow paths of 
execution, e.g., when a steal occurs.

Examples: 
• The THE protocol
• The implementation of cilk_sync
• The use of Cilk stack frames versus closures
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Implementation of Spawn

106

Classic randomized work-stealing: 
Continuation-stealing / work-first: go execute the 
spawned child and package up the continuation to be 
stolen.
Alternative: child-stealing / help-first: push the 
spawned child onto the deque so it can be stolen and 
continue execute the spawning function.  Pop off 
spawned children to execute when encounter a sync.

int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
y = baz(n);
cilk_sync;
return x + y;

}



Issues with Child-Stealing: Space
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for (int i = 0; i < 1000; ++i) {
cilk_spawn foo(i);

}
cilk_sync;

Child-stealing: will create 1000 work items and push 
them onto the deque before start doing any work!

Continuation-stealing: work on the spawned iteration 
and let the rest of the loops to be stolen potentially.



Continuation-Stealing vs Child-
Stealing
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Continuation-stealing:
• Potentially better 

space utilization.
• Better work-efficiency.
• One-worker execution 

follows that of serial 
projection.

• For private caches, 
one can bound the 
cache misses due to  
parallel executions.

Child-stealing:
• Potentially worse space 

utilization.
• Worse work-efficiency.
• One-worker execution 

does NOT follow that 
of serial elision.

• No proven bound on 
cache misses due to  
parallel executions.
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Reads: 
"Only Monsters 
Steal Children."



OPENCILK COMPILER MIDDLE-END
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Compilation Pipeline

Cilk Clang LLVM IR

QUESTION: Where does the compiler deal with 
cilk_spawn, cilk_sync, and cilk_for?

Traditional 
answer

LLVM 
optimizer

LLVM IR EXELLVM code 
generator
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Example: Normalize
__attribute__((const)) double norm(const double *X, int n);

void normalize(double *restrict Y, const double *restrict X,
int n) {

for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

Test: Random vector, n=64M
Machine: Amazon AWS c4.8xlarge
Running time: TS = 0.312 s
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Performance of Parallel Normalize
__attribute__((const)) double norm(const double *X, int n);

void normalize(double *restrict Y, const double *restrict X,
int n) {

cilk_for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

Test: Random vector, n=64M
Machine: Amazon AWS c4.8xlarge
Running time of serial code: TS = 0.312 s
18-core running time: T18 = 180.657 s
1-core running time: T1 = 2600.287 s

Terrible work 
efficiency!

TS/T1 = 0.312/2600
~ 1/8600
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Cilk
compiler

Effect of Compiling Cilk Code
void normalize(double *restrict Y,

const double *restrict X, int n) {
cilk_for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

void normalize(double *restrict Y,
const double *restrict X, int n) {

struct args_t args = { Y, X, n };
__cilkrts_cilk_for(normalize_helper, args, 0, n);

}
void normalize_helper(struct args_t args, int i) {
double *Y = args.Y;
double *X = args.X;
int n = args.n;
Y[i] = X[i] / norm(X, n);

}

Cilk code

C pseudo-
code

Call into Cilk runtime 
library to execute a 
cilk_for loop.Helper function 

encodes the loop body.

The compiler can’t move 
norm out of the loop.
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Tapir: Task-Parallel IR
Tapir embeds recursive fork-join parallelism 
into LLVM’s IR.

115

With few changes, LLVM 
existing optimizations 
work on parallel code.

Cilk Clang Tapir LLVM 
optimizer

Tapir EXELLVM code 
generator

Tapir adds three 
instructions to LLVM IR 
that encode recursive 
fork-join parallelism.

Cilk Clang LLVM IR LLVM 
optimizer

LLVM IR EXELLVM code 
generator

Traditional Cilk compiler pipeline

OpenCilk compiler pipeline



Impact on LLVM
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Compiler component LLVM 6.0 (lines) Tapir/LLVM (lines)
Core middle-end 

functionality 500,283 2,989

Base classes 62,488 0
Instructions 141,321 1,013

Memory behavior 18,907 536
Other analyses 84,348 17
Optimizations 193,219 1,423

Regression tests 3,482,802 5,745
Parallelism lowering 0 5,780
Parallel-tool support 0 3,341

Other 1,856,877 285
Total 5,839,962 18,140



__attribute__((const)) double norm(const double *X, int n);

void normalize(double *restrict Y, const double *restrict X,
int n) {

cilk_for (int i = 0; i < n; ++i)
Y[i] = X[i] / norm(X, n);

}

Parallelize Normalize with Tapir

Test: Random vector, n=64M
Machine: Amazon AWS c4.8xlarge
Running time of serial code: TS = 0.312 s
1-core running time: T1 = 0.321 s
18-core running time: T18 = 0.081 s

Great work 
efficiency:

TS/T1 = 97%
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Work-Efficiency Improvement
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Reference Tapir/LLVM

Ideal
efficiency

Same as Tapir/LLVM, but the front-end handles 
parallel language constructs the traditional way.

Decreasing difference between Tapir/LLVM and Reference

Improved work 
efficiency by ≥ 5%.

99% work efficiency on 
23 of 35 benchmarks.



OPENCILK COMPILER MIDDLE-END: 
TAPIR
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Background: LLVM IR
LLVM represents each function as a
control-flow graph (CFG).

120

exit

if.else

res = ɸ [add, if.else], [n, entry]
ret res

Control-flow graph (CFG)
entryint fib(int n) {

if (n < 2)
return n;

int x, y;
x = fib(n-1);
y = fib(n-2);
return x + y;

}

br (n < 2), exit, if.else

x = fib(n-1)
y = fib(n-2)
add = x + y
br exit

C code

Basic 
block

Control-
flow edge



int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
y = baz(n);
cilk_sync;
return x + y;

}

A Simplified Tapir CFG

exit

det
y = @baz()
sync exit

x1 = load x
ret x1 + y

Simplified Tapir CFG
entry

cont

x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

Tapir represents 
parallel tasks 
asymmetrically.

Spawned 
task Continuation

Tapir adds three constructs 
to LLVM’s IR:
detach, reattach, and sync.
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Serial Projection

y = @baz()
sync exit

x1 = load x
ret x1 + y

Tapir CFG
x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

y = @baz()
br exit

x1 = load x
ret x1 + y

CFG of serial projection
x = alloca int
br det

x0 = @bar()
store x, x0
br cont

exit

det

entry

cont

exit

det

entry

cont

The asymmetry models the 
program’s serial projection.

If the program contains no 
determinacy races, then it is 
semantically equivalent to 

its serial projection. 122



Detach and Reattach

exit

det
y = @baz()
sync exit

x1 = load x
ret x1 + y

Tapir CFG
entry

cont

x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

The detach and reattach instructions denote 
the start and end of a spawned task. 

Detached block

Continue 
block

123

A detach spawns a task 
starting at the detached 
block to run in parallel 

with the continue block.

A reattach terminates 
a spawned task.

INVARIANT: A reattach must identify the same 
continue block as its corresponding detach.



Nested Spawning in Tapir

exito

yo = @baz()
sync exito

x2 = load xo
ret x2 + yo

Tapir CFG entry

conti
x0 = @bar()
store xi, x0
reattach conti

Outer 
spawned 

task

Tapir supports nested spawning of tasks.
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xo = alloca int
detach deto, conto

xi = alloca int
detach deti, conti

conto

deto

deti

Inner 
spawned 

task

x1 = load xi
x2 = x1 + yi
store xo, x2
reattach conto

exiti

yi = @baz()
sync exiti
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Task Scopes

exito

yo = @baz()
sync exito

x3 = load xo
ret x3 + yo

Tapir CFG entry

conti
x0 = @bar()
store xi, x0
reattach conti

A task scope corresponds with a function or a 
spawned task therein.

yi = @baz()
sync exiti

x1 = load xi
x2 = x1 + yi
store xo, x2
reattach conto

xo = alloca int
detach deto, conto

xi = alloca int
detach deti, conti

conto

exiti

deto

deti

Task 
scopes



Sync
The sync instruction syncs tasks within its task 
scope.
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exito

yo = @baz()
sync exito

x3 = load xo
ret x3 + yo

Tapir CFG entry

conti
x0 = @bar()
store xi, x0
reattach conti

yi = @baz()
sync exiti

x1 = load xi
x2 = x1 + yi
store xo, x2
reattach conto

xo = alloca int
detach deto, conto

xi = alloca int
detach deti, conti

conto

exiti

deto

deti

The outer sync
waits for the 
outer detach.

The nested sync
waits for the 

nested detach.



int foo(int n) {
int x, y;
x = cilk_spawn bar(n);
cilk_for (int i = 0; i < n; ++i)
loop_body(i);

y = baz(n);
cilk_sync;
return x + y;

}

Problem: Selective Syncs
What if a sync instruction shouldn’t apply to all
spawned tasks within the task scope?
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The implicit cilk_sync
at the end of this loop 
should not synchronize 

the spawn of bar().



Sync Regions

exit

det y = @baz()
sync within sr, exit

x1 = load x
ret x1 + y

Tapir CFG
entry

cont

sr = @llvm.syncregion.start()
x = alloca int
detach within sr, det, cont

x0 = @bar()
store x, x0
reattach within sr, cont

Tapir’s constructs also use a sync region to 
identify what spawned tasks a sync affects.
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Sync-region  
creation in a 
task scope.

Tapir instructions 
are associated with 

sync regions.

A sync applies only to 
detaches within the 
same sync region.



Differentiating Syncs

exit

det

y = @baz()
sync within sr, exit

x1 = load x
ret x1 + y

Tapir CFG
entry sr = @llvm.syncregion.start()

loop_sr = @llvm.syncregion.start()
x = alloca int
detach within sr, det, cont

x0 = @bar()
store x, x0
reattach within sr, cont

Different parallel language constructs can use 
different sync regions.
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Tapir
parallel loop

A parallel loop can use its own
sync region to ensure its sync
applies only to loop iterations.



Hands-On: Kaleidoscope
In this hands-on, you will use OpenCilk to add 
spawn and sync expressions to a toy 
programming language, Kaleidoscope1.
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def binary : 1 (x y) y;
def fib(n)
if (n < 2) then n
else
var x, y in

x = fib(n-1) :
y = fib(n-2) :
(x + y);

1 https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/index.html

Kaleidoscope code
def binary : 1 (x y) y;
def fib(n)
if (n < 2) then n
else
var x, y in
(spawn x = fib(n-1)) :
y = fib(n-2) :
sync
(x + y);

Parallel Kaleidoscope code 
in fib.k



Hands-On: Kaleidoscope
The code in toy-spawn-sync.cpp uses OpenCilk
to implement a simple Parallel Kaleidoscope 
compiler, with the following components:
• A lexer and parser translate Kaleidoscope 

code into an abstract syntax tree (AST).
• Code-generator routines generate Tapir and 

LLVM IR from the AST.
• The driver uses LLVM’s JIT interface to 

optimize the Tapir intermediate 
representation, generate machine code, and 
run the executable.
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Current focus



Hands-On: Kaleidoscope (~20 min)
HANDS-ON: Complete the code-generator 
routines to produce Tapir for spawn and sync.
• Follow the instructions, marked HANDS-ON, in
toy-spawn-sync.cpp to finish implementing 
SpawnExprAST::codegen() and 
SyncExprAST::codegen().

• In the Docker container, test your code on 
different worker counts:
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$ cd /tutorial
$ make toy-spawn-sync
$ ./toy-spawn-sync < fib.k
$ CILK_NWORKERS=1 ./toy-spawn-sync < fib.k

May take a couple 
of seconds.



Compiler Pipeline with Tapir
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Tapir 
lowering

LLVM 
IR

Machine 
code gen.

EXE

Cilk Clang Tapir LLVM 
optimizer

Tapir

Transforms Tapir instructions 
into ordinary LLVM IR, based 

on a Tapir target.

Includes traditional LLVM optimizations
and new Tapir-specific optimizations, 

such as parallel-loop stripmining.



Tapir Lowering

exit

det

y = @baz()
sync exit

x1 = load x
ret x1 + y

Simplified Tapir CFG
entry

cont

x = alloca int
detach det, cont

x0 = @bar()
store x, x0
reattach cont

Tapir lowering outlines spawned tasks into 
separate functions and inserts runtime code.
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PseudoCFG after lowering

y = @baz()
@cilk_sync(&sf)
x1 = load x
res = x1 + y
@cilk_epilogue(&sf)
ret res

x = alloca int
sf = alloca cilk_stack_frame
@cilk_enter_frame(&sf)
chk = !@cilk_prepare_spawn(&sf)
br chk, sp, cont

@foo.outline(x)
br cont

entry

sp

cont

Runtime 
code

Outlined function 
containing contents 
of original det block.



BREAK
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PRODUCTIVITY TOOLS: CILKSAN
AND CILKSCALE
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Cilksan and Cilkscale
OpenCilk’s productivity tools, Cilksan and 
Cilkscale, use compiler instrumentation.
• Each tool is implemented as a library, which 

is linked to the executable.
• Each tool has a corresponding compiler pass

in the OpenCilk compiler that inserts
instrumentation in the form of calls into the 
tool’s library.
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Tool Compiler Pass
The OpenCilk compiler inserts instrumentation 
just before Tapir lowering.
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Tapir 
lowering

LLVM 
IR

Machine 
code gen.

EXE

Cilk Clang Tapir LLVM 
optimizer

Tapir

Tool 
instrumen-

tation
Tapir



Example: Cilksan Instrumentation
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exit

det

@csan_before_call()
y = @baz()
@csan_after_call()
@csan_sync()
sync exit

@csan_load(x)
x1 = load x
@csan_func_exit()
ret x1 + y

Tapir CFG
entry

cont

@csan_func_entry()
x = alloca int
@csan_alloca(x)
@csan_detach()
detach det, cont

@csan_task()
@csan_before_call()
x0 = @bar()
@csan_after_call()
@csan_store(x)
store x, x0
@csan_task_exit()
reattach cont

The OpenCilk compiler 
inserts Cilksan
instrumentation at 
memory operations, 
control-flow operations, 
and Tapir instructions.



Driving the Cilksan Library
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When the program 
is run, the 
instrumentation 
drives the tool’s 
logic in the Cilksan
library to check for 
races.

exit

@csan_before_call()
y = @baz()
@csan_after_call()
@csan_sync()
sync exit

@csan_load(x)
x1 = load x
@csan_func_exit()
ret x1 + y

Tapir CFG
entry

cont

@csan_func_entry()
x = alloca int
@csan_alloca(x)
@csan_detach()
detach det, cont

@csan_task()
@csan_before_call()
x0 = @bar()
@csan_after_call()
@csan_store(x)
store x, x0
@csan_task_exit()
reattach cont

Computes which 
operations are 

logically in parallel.

Records 
memory reads 

and writes.



How Cilksan Works (Intuition)
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Intuitively, Cilksan maintains the computation’s 
trace dag to find parallel memory accesses.

Read x

Write x

Write x

No race

Race!Because race-
detection is 
based on the 
dag, Cilksan’s
race-detection 
is guaranteed, 
regardless of 
scheduling.

Race!



How Cilksan Works
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Read x

Write x

Write x

No race

Race!Storing the trace 
dag is inefficient 
in practice.

Instead, Cilksan
implements the 
SP-bags 
algorithm [FL99] to 
achieve the 
same effect.

[FL99] Feng, Leiserson.  Efficient Detection of Determinacy Races in Cilk Programs.  
Theory of Computing Systems, 1999.

Race!



Optimizing Cilksan Instrumentation
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exit

det

@csan_before_call()
y = @baz()
@csan_after_call()
@csan_sync()
sync exit

@csan_load(x)
x1 = load x
@csan_func_exit()
ret x1 + y

Tapir CFG
entry

cont

@csan_func_entry()
x = alloca int
@csan_alloca(x)
@csan_detach()
detach det, cont

@csan_task()
@csan_before_call()
x0 = @bar()
@csan_after_call()
@csan_store(x)
store x, x0
@csan_task_exit()
reattach cont

The Cilksan compiler 
pass performs
static race detection
to avoid inserting 
unnecessary 
instrumentation.



Hands-On: Kaleidoscope parfor
The toy-parfor.cpp code adds parfor, a 
parallel-for construct, to Kaleidoscope.
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def fibloop(n)
parfor i = 0, i < n in
fib(i);

Kaleidoscope parallel loop 
in fib-loop.k

But the construct has a bug in it that results in 
a determinacy race! 



Hands-On: Kaleidoscope parfor
Just like toy-spawn-sync.cpp, the code in
toy-parfor.cpp uses OpenCilk to implement a 
simple Parallel Kaleidoscope compiler:
• A lexer and parser translate Kaleidoscope 

code into an abstract syntax tree (AST).
• Code-generator routines generate Tapir and 

LLVM IR from the AST.
• The driver uses LLVM’s JIT interface to 

optimize the Tapir intermediate 
representation, generate machine code, and 
run the executable.
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Hands-On: Kaleidoscope parfor
(~20 min)
HANDS-ON: Use Cilksan to identify the race in 
the parfor implementation.
• Follow the instructions, marked HANDS-ON, in
toy-parfor.cpp (in FunctionAST::codegen()
and InitializeModuleAndPassManager()) to 
enable the use of Cilksan.

• In the Docker container, run the following to 
observe the race in parfor:

• OPTIONAL, HARD: Fix the race.
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$ cd /tutorial
$ make toy-parfor
$ ./toy-parfor -O0 --run-cilksan < fib-loop.k



Parallel Loops in Tapir
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The parfor implementation was made by 
copying the implementation of for and then 
adding Tapir instructions.

i3 = load i
next_i = i3 + i
store i, next_i
br pcond

detach body, latch

sync after

i2 = load i
@fib(i2)
reattach latch

CFG for
fibloopentry

pcond

ploop

body

latch

NOTE: Loop 
body is 

spawned.

exit

Race on i!

i1 = load i
br (i1 < n), ploop, exit

i = alloca int
store i, 0
br pconddef fibloop(n)

parfor i = 0, i < n in
fib(i);



Fixing the Race
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Here is one way to fix the race:

i3 = load i
next_i = i3 + i
store i, next_i
br pcond

detach body, latch

sync after

ii = alloca int
store ii, i1
i2 = load ii
@fib(i2)
reattach latch

entry

pcond

ploop

body

latch

exit

i1 = load i
br (i1 < n), ploop, exit

i = alloca int
store i, 0
br pcond

Modified 
code

Tapir lowering ensures 
that i1 is passed by value 
to the outlined function.

CFG for
fibloopdef fibloop(n)

parfor i = 0, i < n in
fib(i);



Lowering Parallel Loops in Tapir
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During Tapir lowering, Tapir’s LoopSpawning
pass converts parallel loops to spawns and 
syncs using recursive divide-and-conquer.
• Tapir loops are first canonicalized using 

standard LLVM loop transformations.
• The LoopSpawning pass outlines each*

parallel loop into a separate function that 
implements the parallel divide-and-conquer 
recursion using Tapir.

• Those generated Tapir instructions are later 
lowered to runtime calls.

*To prevent compiler misoptimization, 
only marked loops are transformed.



150

www.opencilk.org
contact@opencilk.org

http://www.opencilk.org/
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